Direct observation of atomic scale graphitic layer growth.

نویسندگان

  • Li Liu
  • Kwang Taeg Rim
  • Daejin Eom
  • Tony F Heinz
  • George W Flynn
چکیده

The demand for better understanding of the mechanism of soot formation is driven by the negative environmental and health impact brought about by the burning of fossil fuels. While soot particles accumulate most of their mass from surface reactions, the mechanism for surface growth has so far been characterized primarily by measurements of the kinetics. Here we provide atomic-scale scanning tunneling microscope images of carbon growth by chemistry similar to that of importance in soot formation. At a temperature of 625 K, exposure of the surface of highly ordered pyrolytic graphite to 1 Langmuir of acetylene leads to the formation of both graphitic and amorphous carbonaceous material at the edges of nanoscale pits. Given the similarity of the electronic structure at these graphite defect sites to that of soot material growing in flames at higher temperatures, the present studies shed light on the mechanism for soot growth. These experiments also suggest that healing of defect sites in graphene nanostructures, which are of considerable interest as novel electronic devices, should be possible at modest surface temperatures by exposure of defected graphene to unsaturated hydrocarbons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of entrainment near a density stratified layer: Laboratory experiment and LIDAR observation

In this paper a simple qualitative model of the growth of a mixed layer adjacent to a uniform layer with a stably stratified layer is presented. The depth variations of mixed layer can be estimated from direct measurements. The Entrainment of a stably stratified layer into a turbulent mixed layer in a confined region was studied in laboratory for different Richardson numbers. The internal waves...

متن کامل

AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4H-SiC(000(1)over-bar)

A characterization of the graphitic overlayer that forms on 4H–SiCð000 1Þ substrates heated for ten minutes to temperatures T > 1350 C under vacuum conditions has been performed. X-ray photoelectron spectroscopy of the C-face reveals the presence of graphitic carbon with a thickness that increases with growth temperature. Parallel atomic force microscope (AFM) studies find a mesh-like network o...

متن کامل

Dimensional dependence of phonon transport in freestanding atomic layer systems.

Due to the fast development of nanotechnology, we have the capability of manipulating atomic layer systems such as graphene, hexagonal boron nitride and dichalcogenides. The major concern in the 2-dimensional nanostructures is how to preserve their exceptional single-layer properties in 3-dimensional bulk structures. In this study, we report that the extreme phonon transport in graphene is high...

متن کامل

Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography.

Electrochemical oxidation and etching of highly oriented pyrolytic graphite (HOPG) has been achieved using biased atomic force microscopy (AFM) lithography, allowing patterns of varying complexity to be written into the top layers of HOPG. The graphitic oxidation process and the trench geometry after writing were monitored using intermittent contact mode AFM. Electrostatic force microscopy reve...

متن کامل

Graphitic carbon grown on fluorides by molecular beam epitaxy

We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 8 7  شماره 

صفحات  -

تاریخ انتشار 2008